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CaSSIS colour imaging of late lava flows and hydrothermal alteration in Ladon Basin, Mars
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CaSSIS image summary

CAS-MO01-2018-05-06T12.52.27.314
Filters RED, PAN, BLU in RGB colours
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A Geologic context e

The CaSSIS colour stereo camera of ExoMars/TGO views the surface

Large volumes of sediments were deposited in the Ladon basin during late Noachian and rof= T M L g of Mars with 4 filters in the ra nge 0.4-1.2 LLm and pixel size 4.6 m. Its
Hesperian [2], transported from the surrounding Noachian terrains through a vast and °-8_—("{M b J i colour capabilities for geological interpretations are explored in the
multiphase drainage system. Groundwater flow is thought to play an important role in the : | ] _ _ .
evolution of the region, in connection with the formation of the several nearby chaos. The E i B |t | I Ladon Impact basm, where it reveals unexpected geology, that
basin undergone later widespread extensional fracturing and more sparsely, contractional j‘i £..0 | | | E CRISM CTX. and HiRISE data help interpret further. Most ||ke|y the
deformation [3]. Some of the fractures are radial or concentric about filled craters, others are ¥ : E " ’ _ _ _ ' ’
consistently NNW-dipping. o2 I g surface is capped by a thin mafic or ultramafic flow, dated early or
o0 L middle Amazonian, underlain by a serpentinised flow. These results
Measured transmission curves indicate that a long time after formation, the Ladon basin had

through the centres of each of

the bandpass filters [1] undergoing volcanic and hydrothermal activity, and reveals the

exceptional potential of CaSSIS for geologic mapping.
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section

One of the first CaSSIS images
captured an area in Ladon
showing one such fracture or
graben. This site was targeted
so as to test the spectral
capabilities of the 4 filters of
CasSSIS, in the blue-green
(BLU), a broad red (PAN), and
two near-infrared (RED, NIR)
[A], and to benefit from
existing CRISM, CTX, and

CaSSIS image draped over CTX DTM generated by fusion of photogrammetric and photoclinometric
information [6], of vertical resolution 1 m.
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layer probably includes serpentine.

5. Furthermore, CRISM data also indicates that the
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